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EQUILIBRIb~ AGGREGATION IN A MODERATELY CONCENTRATED FINELY DISPERSED 

SYSTEM 

Yu. A. Buevich UDC 541.182 

The equilibrium properties of dispersed small interacting particles capable of 
reversible aggregation are investigated. 

The aggregation and structurization of a finely dispersed system can lead to changes in 
its physical characteristics (effective viscosity, thermal and electrical conductivities, 
etc.) by more than one or two orders. The shape and structure of the aggregates formed de- 
pend on the interaction between the particles of the dispersion, and if the interaction is 
central fairly coarse aggregates can be regarded as approximately spherical. Below we con- 
sider a system of spherical aggregates in a state of detailed balance with one another and 
with single particles. We ignore the formation of structures by the aggregates, which is 
possible in a concentrated system. This restricts the analysis to reversible aggregation 
processes in moderately concentrated systems. 

Attempts to apply the techniques of equilibrium statistical mechanics to the investi- 
gation of such systems are rather rare [1-6]. The intrinsic volume of the particles is 
usually ignored in this case [1-5], which does not allow the examination of a highly con- 
centrated system; some critical comments on [1-4] are made in [6]. We adopt here the method 
of [6], based on the use of a lattice model of the type introduced in [7] and suitable for 
the analysis of concentrated systems; we also correct the inaccuracies in [6]. 

General Relations. Assuming that the states of a particle system with different 
"occupation numbers" ~i are distinguishable, we determine the total number of possible 
states of the system by the relation [6] 

where 

M! N! Ni! 
w ( ~ ) =  (M--N)! N! [INi! I], (i,)v~,~,. . Mv~,,-l~ , 

f 

(1) 

M -  V - P~ N, N = ~ N ~ ,  N~-=iv~. (2) 
(V/On) P i 

The f i r s t ,  " c o n f i g u r a t i o n a l , "  c o f a c t o r  in  (1) i s  e q u a l  to the  number o f  ways in  which N 
i n d i s t i n g u i s h a b l e  p a r t i c l e s  can be a r r a n g e d  in  a l a t t i c e  w i t h  M c e l l s  o f  the  same t y p e  [ 7 ] ;  
t h e  s e c o n d ,  " c o n f o r m a t i o n a l , "  c o f a c t o r  r e p r e s e n t s  t h e  number o f  ways i n  which N p a r t i c l e s  
can be d i s t r i b u t e d  among " a g g r e g a t e  p h a s e s "  w i t h  Ni p a r t i c l e s ;  t he  t h i r d  f a c t o r  i s  t he  num- 
be r  o f  ways in  which the  p a r t i c l e s  o f  t h e s e  p h a s e s  can be d i s t r i b u t e d  among d i f f e r e n t  a g g r e -  
g a t e s ,  w i t h  due a l l o w a n c e  f o r  t he  c o n s t r a i n t  e f f e c t s  m a n i f e s t e d  when p a r t i c l e s  which  a r e  no t  
free but are bound into aggregates are arranged in a lattice (see [8] also). In [2] the 
quantity W was mistakenly identified only with the second cofactor in (i), in [5] the con- 
figurational contribution to W was completely ignored, and in [6] the Boltzmann factor 
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(N~) -*, which takes into account the a priori indistinguishability of the particles, was 
omitted without any justification. 

Taking the energy of a system of single, noninteracting particles as zero energy, we 
write 

U(~) : ~ E iv i :  ~ (--e'+ e~)ivi : - - s 'N  -~- ~ r (3) 
i i i 

where the energy "surface defect" ci characterizes (for one particle) the "degree of un- 
saturation" of the interparticulate bonds in an aggregate due to the fact that some of the 
particles comprising the aggregate are situated on its surface and not within it. We have 

~1 = e', e~ = e ' - - A e  . . . . .  ie i=ef( i )  ~ 4 8i2/3(i ~ 1), 
(4) 

8'= z'As, ~ = (z'--z") A~. 
For small i (>2) e i is not single-valued -- its value depends on the total number of 

interparticulate bonds in the particular aggregate. For instance, in the case of i = 3 for 
an aggregate in the form of a chain with two such bonds e3 = r -- (2/3)Ae, and for a cluster 
with three bonds e3 = E' -- Ae. Thus, in a fuller analysis we would have to distinguish be- 
tween aggregates of different types, but of the same size, by introducing appropriate num- 

f ,, 
hers vi, vi, .... We note also that the "internal" variables, which characterize the state 
of single particles, are not taken into consideration. 

The statistical sum of the system, characterizing its properties, which are completely 
! 

described by the set of numbers ~i, is written in the well-known "main term" approximation 
in the form 

Z (~) = W (v~) exp [-- U (vO/kT ]. (5) 
Using the Stifling formula for the factorials of large numbers and taking (I) into 

account, we obtain at the "thermodynamic limit" (N-~o, Ni/N = ni) the following expression 
for the entropy of the system: 

S = k lnW= So+ AS, AS = A1S-FA~S, 

So=--Nk[ ln  P~P +(-P~p 1) l n ( l  p~P i ] ' ,  

A~S=--Nk ~n~Inn~, A~S=Nk~ n~ [n~ (1-- li.. I n (  n~i 

(6) 

P a  , t 

The terms So, A~S, and A=S in this expression correspond to the different cofactors in 
formula (i); when i >> i the quantity in the braces in (6) is approximately equal to (in 
2~i + 0.5)/i. The entropy So of a system of single particles decreases from infinity for 
a maximally diluted system (p§ whose particles can be found in an infinitely large num- 
ber of states, to zero for a closely packed system (0+0a), which can obviously be found in 
a single state that can be distinguished within the framework of the adopted lattice model. 
The entropy of aggregation AS is negative when 0 < 0 < Pa, which reflects the increase in 
order of the system due to its aggregation. 

Using (3) and (6) it is easy to determine all the other thermodynamic functions of the 
system. For instance, the Helmholtz free energy is expressed as follows: 

F= U--TS = Fo+ AF, Fo=--TSo, AF= U--TAS, (7) 
where Fo relates to a system of single particles and is purely entropic, while AF charac- 
terizes the change in free energy due to aggregation. 

The chemical potential of a particle in an aggregate of i particles is 

t*~ = = ~to q- A~h ; ~to : -- kT In 1 , 
T,M l D 

kTi l n [  ni(i!)i ( p_~__)l-i]. 

(8) 
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[In the derivation of (8) the equivalence of the conservation of volume condition to the 
condition M = const, and the formulas (3)-(7), and N = EN i, were taken into account.] 

Minimizing F from (7) with N = const we obtain expressions for the numbers ~i [6]: 

M ~ 
vi -- exp [(o~ -- [3i) il, [51 -- , 18 = , 

i! kT  kT  

~ = ~/ ( i ) / i  ,~ 4 f~i -~/~  (i >> 1), 

where ~ has the sense of activity and is given by the equation [see (8)] 

j = ~  1 e x p t ( c z - - ~ i )  i I - -  N _ P 
( i -  1)! M p~ 

(9) 

(lO) 

From (9) we obtain formal expressions for Bi (or ei) in terms of u and ~i and, by using 
these in (8), we obtain 

!q = Po + k T ( ~  - -  ~ ' - -  ln(p/p~)),  ~' = e'/kT. ( 1 1 )  

The independence of ~i on i reflects the law of mass action, which holds for many 
other systems in a state of associative equilibrium [9]. From this it is easy to obtain the 
usual thermodynamic corollaries of the Dalton law type for the partial pressures of the 
aggregate phases, and so on. 

Finally, we give the formula connecting the radius of large aggregates with the num- 
ber i [2, 6]: 

i = R~ 1 -}- 4 r - o i / 3  , i >> 1. (12) 
f - - a  

The terms in this expression give the numbers of particles within the aggregate and on its 
surface; at very large i the asymptotic formulas R i ~ ri :/3, f(i) ~ 4i =/3 are true [the 
latter expression was used in (4) and (9)]. 

Investigation of Aggregate Equilibrium. As numerous experiments indicate, and as the 
theory in [6] confirms, two fundamentally different situations are possible. If the value 
of e for fixed P/Pc and T is not too high, the system contains mainly single particles 
(singlets) and a much smaller number of doublets, triplets, and other aggregates of several 
particles. In this case the terms of the sum in (i0) decrease rapidly with increase in the 
number i. If e is greater than a certain critical value e,, which depends on p/p~ and T, 
the system is a suspension of very large aggregates in a dilute system of single particles 
with a small admixture of doublets, triplets, etc. The "remote" maximum of the terms of the 
sum in (i0), attained at a certain i = i m ~ i, corresponds to this situation. 

If this maximum actually exists, then ~, B, and i m will satisfy the following equation 
and inequality : 

2i~ i~ ( 1 3 )  

For an approximate solution of Eq. (i0) we calculate the sum J, taking into account 
that if the remote maximum is present a significant contribution to it is made, firstly, by 
terms with small i and, secondly, by terms with i ~ im, i.e., J ~ J: + J=. The calcula- 
tion of the sum J~ of the first terms is hindered by the fact that within the framework of 
the deveioped theory the energy c i for small aggregates cannot be determined uniquely. 
Hence, we confine ourselves here to obtaining upper and lower estimates of J~. 

For E i the inequality gi < ci i < c'i -- AE(i -- I) is valid. The estimate ~i ~ c under- 
estimates the total energy of particles in small aggregates -- it is assumed, in fact, that 
these particles on the average involve the same number of interparticulate bonds as parti- 
cles in large aggregates. The estimate e i ~ e' -- ((i -- l)/i)Ae, on the other hand, over- 
estimates the energy of the particles -- it is assumed that in small aggregates the number 
of interparticulate bonds is the lowest possible, i.e., these aggregates consists of linear 
chains of particles. Using these limiting estimates, we obtain after simple calculation 
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1 sup J ~  ~.  ~= 1 (i-- 1 ) ~ . ~  ' exp l(~ - -  ~) i1 ~ exp {~ - -  ~ § exp (~ - -  ~)}, 

1 exp[(~--  ~') i+A~(i-- 1)] (14) inf J1 ~ ( i -  1)--------~ 

= exp {a - -  ~' + exp (a - -  8' + A~)}, A~ = Ae/kT. 
The formula for sup Jx was previously obtained in [6]. Usually z' = 6-8, z" = 5-6, i.e., 
from (4) 8 = (I-2)A8, 8' = (6-8)A~. 

An idea of the lower limits of quantities c, and i m can be obtained by noting that when 
Jz ~ sup J1 it follows from (i0) that ~-8 < 0. From this and (13), neglecting i/i m in com- 
parison with unity, we obtain a double inequality that is a necessary (but not sufficient) 
condition for the appearance of large aggregates in the system: 

(1 - L ) - '  < < (i,, iLI) . (15) 

Using the asymptotic form f(i) ~ 4i2/3 we see that the right-hand side of (15) is, in fact, 
larger than the left-hand side when i m ~ 575, to which 8 ,~ 9.35 corresponds. 

We now calculate the sum J2 of terms in (i0) with i ~ i m. Using the formula for e i 
when i >> i from (4) and the Stifling formula, replacing summation by integration in accord- 
ance with the usual rules, and evaluating the obtained integral by the Laplace method [i0], 

we have [fm = f(im)] 

J2 ~ i~ (1 -+ ~i~fil,)-'/~ exp {ai,~ - -  ~f~ ~- im (l --- |n ira)}. (16) 

(In [6] an error was made in the calculation of this quantity.) 

Substituting (16) into (I0) and using formula (13) for u and the asymptotic form fm ~ 
.23 41m/ , we write the equation for i m in the form 

( 8 ~ )-1/~ I 1 4 ~i~/3} 9 
i~ 1 9 ~ 2 3 9= (17) 

<1/3 exp i~ ~ Ja, 

where a~ is also a function of i m and 8. If (17) for a given P/Pa and ~ has a solution i m 
satisfying the inequality in (13), aggregation involving the formation of very large aggre- 
gates takes place; otherwise, aggregation practically ends at the stage of formation of a 
particular number of doublets and triplets. It is easy to see that (17) has a solution at 
large 8, provided that P/Pa -- J1 > 0. 

It is convenient to introduce a new unknown ~ = $/i~/3, for which from (17) we obtain 

the equation 

where  J~ i s  u n d e r s t o o d  as a f u n c t i o n  o f  e and 8. The s o l u t i o n  of  (18) unde r  c e r t a i n  c o n d i -  
tions can be represented as follows: 

~ I I] 
- -  , ( 1 9 )  

and J1 is estimated when o = 3/4. This solution is obviously valid when Io -- (3/4) I << ~. 

We first assume that J~ ~ P/Pa' In this case, even when P/Pa = 0.0i and 8 = i0 the 
error of the approximate relation ~ ~ 3/4 is only 3.5%; with increase in p/p~ and 8 the 
error decreases. Hence, the condition for validity of the simple asymptotic formula 

im ~ (4~/3) 3 ~ 2,4 ~3, ~ > 1, (20) 

which gives the equilibrium size of the most probable large aggregates in the case of 
"strong" aggregation, acquires the form 

P J l ~ e x p  ( 64 ~ ) ,  ~ 1 .  (21) 
9~ 27 

The quantity on the right-hand side of (21) when ~ ~ i0 is extremely small and, hence, 
the curve 8 = 8,(p/pa ), which demarcates the region of strong and weak aggregation on the 

parametric plane (~, P/Pa), is given by the relation p/pa ~ J~(o, 8) when ~ = 3/4. When 
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a representative point crosses this curve there is a "phase transition" -- in a weakly aggre- 
gated system rapid aggregation occurs until the investigated equilibrium state with large 
aggregates is established. 

Unfortunately, the construction of this curve is difficult, since the exact expression 
for J1 is unknown. If instead of J: we use its upper limit from (14), the corresponding 
curve is given by the equation [we use (20) here] 

18~aexp {--~ + 18~aexp (--~)} ~ P/pa. (22) 

At values B = B, equal to i0, 12.5, 15, and 17.5, the right-hand side of (22) is equal to 
1.82, 0.15, 0.018, and 0.0024, respectively. This phase transition in a system with a given 
value of p/pa becomes possible in principle when ~ > .B,, and from the condition P/Pa < 1 we 
obtain the minimum value of B, (~ii.5). 

If we use as J1 its lower limit from (14), then values of B, slightly smaller than those 
calculated from (22) will correspond to the former P/Pa" 

At a distance from the phase equilibrium curve in the parametric plane in the region 
of strong aggregation, formulas (13) for ~ and (20) for i m are approximately valid, which 
determines the equilibrium state of the system, including the numbers vi calculated in (9). 
Using again the Laplace method of asymptotic evaluation of integrals [i0], we can easily 
obtain expressions for the thermodynamic potentials introduced above, and then we can use a 
standard method to determine the amount of heat evolved by the system during aggregation, 
and so on. In view of limited space these results, whose obtainment is trivial, are not 
given here. 

Model System. The variance of the distribution of the number of large aggregates with 
respect to the number of particles contained in them is proportional, as is easy to show, 
to B-a << i. At the same time, the number of doublets and other small aggregates in a sus- 
pension in which large aggregates are suspended is small in comparison with the singlet con- 
tent. Hence, when B >> 1 we can consider a simplified model of a real, strongly aggregated 
system composed of only singlets and identical large aggregates in which the number of parti- 
cles is given by formula (20). The only unknown parameter in this model is obviously the 
total number of singlets ul (or their fraction n~ = v~/N). Performing calculations similar 
to those above we obtain the following relations in place of (i), (3), and (6): 

M! 
W = (23) 

( M _ _ N ) ! ( i ~ ! ) ~ % ! v m !  M~m(i~ - I ) '  

U = - -ErN @ etV 1 @ efmv m = @ . ( N  - -  u (24) 
\ l m  . 

where So, as before, is given by the formula in (6), and the free energy F has the form of 
(7). 

Minimizing the free energy with respect to the parameter ~I we obtain 

vl Pa (_~ ,  Ira' t ~ 18 Pa [~a exp(_~,), (26) nl - -  --" im exp \, - -  1 @ ~ im / 
N p p 

which also gives the quantity v m = (N- ~i)/i m [the approximate equality is obtained by the 
use of formulas (20) and fm ~ 4im/3]. 

Formula (26) is as accurate as the formula for the number of singlets, obtained from 
(9) with the aid of (4), (13), and (20). 

Instead of expressions (8) for the chemical potentials we have 

Pl = Po + k T  In nl, 
(27) 

~ m = P ~  " im pap )}" 

The condition for equilibrium of the system is the equality of the chemical potentials 
of the singlets and particles contained in the aggregates. Using (26) it is easy to verify 
that this condition is fulfilled identically. 
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The obtained expressions are relatively simple and correctly represent the properties 
of a strongly aggregated dispersion. Hence, it is convenient to use them in investigations 
of the diverse physical properties of such a dispersion. We give two examples. 

From (26) and (27) we obtain a simple formula for the amount of heat Q released during 
aggregation: 

Q = N (Po - -  P1) - - - N k T  In n 1 ~ N k T  {~' - -  3 In ~ + In (P/Pa) - -  2,9}. (28)  

It is clear that this result can be of practical value in experimental investigations. For 
instance, by measuring Q we can draw some inferences regarding the concentration of aggre- 
gates in the system or the particle binding energy. 

The second example relates to the application of the obtained results to the investiga- 
tion of significantly nonequilibrium processes in dispersions. In [ii] a formal analogy was 
established between a diffusive Brownian flow of particles or aggregates in a dispersion and 
a convective flow under the action of thermodynamic forces proportional to the gradients of 
the corresponding chemical potentials. In particular, the following expression was obtained 
in [ii] for the coefficient of Brownian diffusion in constrained conditions for a suspension 
of single particles: 

6 ~ a  1 - - p  ~--~--p jT, p (29)  

Fo r  a d i l u t e  s y s t e m  K ~ 1 -- 6 . 5 5  p ,  and ~ can  be  e v a l u a t e d ,  f o r  i n s t a n c e ,  by  u s i n g  t h e  
v i r i a l  e x p a n s i o n  f o r  a s l i g h t l y  n o n i d e a l  ga s  [ 9 ] ,  a s  was done  i n  [ 1 1 ] .  

It is obvious that the results of this study, leading to simple relations for the chemi- 
cal potentials, can be used to extend the results of [ii], firstly, to a suspension of 
moderate concentration (the function K(p) for such suspensions was calculated in [12]) and, 
secondly, to suspensions with appreciable aggregation. 

NOTATION 

a, particle radius; E i, energy of aggregate of i particles; F, free energy; f(i), 
number of particles on surface of large aggregate; i, number of particles in aggregate; J, 
J1, and J~, sum in (i0) and its components; K(p), function in (29) taking account of con- 
straint effects; k, Boltzmann constant; l, minimum distance between surfaces of particle 
in aggregate; M, number of cells in lattice; N, total number of particles; N i = igi; n i = 
Ni/N; R i, radius of large aggregate; r, quantity defined in (12); Q, heat released by 
aggregation; S, entropy; T, temperature; U, internal energy; V, volume of system; v, volume 
of particle; W, number of states of system; Z, statistical sum; z', z", number of inter- 
particulate bonds per particle within and on surface of large aggregate; ~, activity; 8 = 
e/kT; e = (z' -- z")Ae; c' = z'AE; Ae, half of binding energy of two interacting particles; 
Ei, surface defect of particles in aggregate of i particles; D, viscosity of liquid; ~, 
chemical potential; v i, total number of aggregates composed of i particles; p, Pa, volume 
concentration of particles in system and within aggregates; ~ = 8/il/3. Subscripts: m, 
most probable aggregates; i, aggregates composed of i particles; asterisk, critical values 
of parameters. 
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EFFECT OF IRRADIATION ON DENSITY OF POLYMERS 

B. A. Briskman and S. I. Rozman UDC 678.742:046 

A survey is made of available data on the effect of irradiation on the density of 
several polymers. Results of measurements are presented pertaining to the density 
of polyethylene, polystyrene, polymethyl methacrylate, and polytetrafluoroethylene 
at temperatures from --196 to +I00~ 

The few available published data on the density of irradiated polymers pertain to the 
temperature range of +20~ and higher. It seems appropriate to separate the data pertaining 
to crystalline substances from those pertaining to amorphous ones, inasmuch as irradiation 
affects them through different mechanisms. 

In crystalline polymers (polyethylene, polypropylene, polytetrafluoroethylene, etc.) 
the change of density is related to amorphization (or with increasing crystallinity, as in 
the case of polytetrafluoroethylene, with fragments of molecules aligning together and form- 
ing small crystals during the process of radiative decomposition) and to cross-linkage of 
polymer chains occurring principally in the amorphous phase. The change of density in 
amorphous polymers (polystyrene, polymethyl methacrylate, etc.) is determined by the compet- 
ing processes of radiative linkage and decomposition. Amorphization of polymers lowers their 
density, since Pc > Pa (densities of crystalline phase and amorphous phase respectively) over 
the entire temperature range. As a result of radiative linking, the density of a polymer 
increases on account of the decreasing free space. Decomposition has, as a rule, the oppo- 
site effect. 

In many cases radiative macroeffects involving density, viz., those associated with 
pore and crack formation as a result of gas evolvement during irradiation, must also be 
taken into account. Such effects depend overridingly on the irradiation temperature and on 
the power of the absorbed radiation dose. 

The data in Fig. 1 represent results of density measurements made for high-density 
polyethylene at +20~ [1-3]. The parameter here is the irradiation temperature to. At 
relatively low irradiation temperatures to (20-30~ the amorphization of high-density poly- 
ethylene resulting in a decrease of density is largely compensated by radiative linking. 
Consequently, the density either hardly changes or slightly increases over a wide range of 
absorbed radiation doses. As the irradiation temperature to is raised, the amorphization 
of high-density polyethylene accelerates rapidly [4] while the radiative-chemical linkage 
yield changes little. Accordingly, the density of high-pressure polyethylene decreases 
until the radiation dose reaches a certain level of the order of D = 5-7 MgR at which the 
crystal!inity level in the polymer is already low (reduced from 50 to 5-7% at to = 80~ and 
measured at t m = 20~ and then increases as a result of further linking. Measurements of 
HPPE (high-pressure polyethylene) density p at temperatures tm up to 80=C, not published in 
report [i], have revealed that the trend of the p = f(D) curves remains the same as in Fig. 
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